skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Alam, Md Rakibul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. PurposeElectric trucks and platooning are promising technologies to reduce greenhouse gas emissions in the freight sector. To maximize the benefits of these two technologies, effective coordination of charging and platooning is essential, especially considering insufficient charging stations (CSs), long charging duration and tight freight delivery window for middle-mile electric trucks. Therefore, this paper aims to jointly optimize the scheduling of charging and platooning of electric trucks over the freight transportation network. Design/methodology/approachThis paper proposes a mixed integer linear programming model to minimize the total costs from en-route charging, depot charging, and delivery delay. This also presents scenario analyses to understand the impacts of key features on system costs, including battery capacity, number of charging plugs at CSs, charging speed, availability of alternative paths and platoon energy-saving percentage. To solve the model with a large fleet size, a warm-start-based parameter-tuned solver approach, and hybrid metaheuristics of variable neighborhood search and local branching were implemented and compared based on performance. FindingsThe proposed model was implemented using the freight network in Florida. In a case study with a small fleet size, platoon scheduling reduced 19% of en-route charging cost and 30% of delivery delay cost compared with the case of only charge scheduling. Electric trucks were charged around three times with an average duration of 35 min per session to facilitate platoon scheduling and minimize the total cost. Originality/valuePrevious models optimized charging and platoon scheduling for single routes that cannot be generalized for network level and multiple origin-destination pairs; this study addresses network-level optimization. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026